Matroid bases with cardinality constraints on the intersection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matroid Intersection with Priority Constraints

In this paper, we consider the following variant of the matroid intersection problem. We are given two matroids M1,M2 on the same ground set E and a subset A of E. Our goal is to find a common independent set I of M1,M2 such that |I ∩A| is maximum among all common independent sets of M1,M2 and such that (secondly) |I| is maximum among all common independent sets of M1,M2 satisfying the first co...

متن کامل

On the cardinality constrained matroid polytope

Given a combinatorial optimization problem Π and an increasing finite sequence c of natural numbers, we obtain a cardinality constrained version Πc of Π by permitting only those feasible solutions of Π whose cardinalities are members of c. We are interested in polyhedra associated with those problems, in particular in inequalities that cut off solutions of forbidden cardinality. Maurras [11] an...

متن کامل

Matroid Intersection

Last lecture we covered matroid intersection, and defined matroid union. In this lecture we review the definitions of matroid intersection, and then show that the matroid intersection polytope is TDI. This is Chapter 41 in Schrijver’s book. Next we review matroid union, and show that unlike matroid intersection, the union of two matroids is again a matroid. This material is largely contained in...

متن کامل

Persistency and matroid intersection

In this paper, we show that for any independence system, the problem of finding a persistency partition of the ground set and that of finding a maximum weight independent set are polynomially equivalent.

متن کامل

5. Lecture Notes on Matroid Intersection

One nice feature about matroids is that a simple greedy algorithm allows to optimize over its independent sets or over its bases. At the same time, this shows the limitation of the use of matroids: for many combinatorial optimization problems, the greedy algorithm does not provide an optimum solution. Yet, as we will show in this chapter, the expressive power of matroids become much greater onc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2021

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-021-01642-1